NAVAL POSTGRADUATE SCHOOL
Monterey, California

3

SOFTWARE REUSE AND ITS INHERENT LEGAL
IMPEDIMENTS

by
Claxton R. Johnson, Jr.

June 1995

Principal Advisor: William Short
Associate Advisor: Mark Stone

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

maintaining the data needed, and completing and r ing the collection of infor

22202-4302, and to the Office of Management and Budget, Paparwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE
Blank) June 1995

Master’s Thesis

4. TITLE AND SUBTITLE
SOFTWARE REUSE AND ITS INHERENT LEGAL IMPEDIMENTS.

6. AUTHOR(S)
Claxton R. Johnson, Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department

of Defense or the US Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Software reuse has become a critical issue as public and private entities struggle to control cost in the expensive field of
applications development and authors of software products act to protect their intellectual property rights. Software customers
who are engaged in end-use development hope to be able to negotiate reuse contracts that ailow them to economically develop
complete applications. This thesis investigates the history and discusses the legal issues surrounding the reuse of software as
intellectual property. It concludes by discussing several measures for dealing with the legal barriers to software reuse.

14. SUBJECT TERMS
CARDS, FAR, DFARS, Software Reuse, Liability

16. PRICE CODE

15. NUMBER OF PAGES 59

18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Approved for public release; distribution is unlimited.

SOFTWARE REUSE AND ITS INHERENT LEGAL IMPEDIMENTS

Claxton R. Johnson, Jr.
Captain, United States Marine Corps
B.S., Hampton University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June 1995

] ' Avail and/or
Author: C { 4’2"_\‘ Dist Special

Claxt96 R. Johnson, Jr.

b
Approved by: /(//bgga/«a W ,q l l

William Short, Principal Advisor

I 5/7&—-’
Mark Stoge, Associate Advisor
% //JL #Y

~" David Whipple, Chairman,/
Department of Systems Management

1l

ABSTRACT

Software reuse has become a critical issue as public and private entities struggle
to control cost in the expensive field of applications development and authors of software
products act to protect their intellectual property rights. Software customers who are
engaged in end-use development hope to be able to negotiate reuse contracts that allow
them to economically develop complete applications. This thesis investigates the history
and discusses the legal issues surrounding the reuse of software as intellectual property.
It concludes by discussing several measures for dealing with the legal barriers to software

reuse.

vi

TABLE OF CONTENTS

L. INTRODUCTIONctruiieicteeneercnnentesestseeetessssesssssessesesseseestesesesssncesesenestesensensansnsssensns 1
AL PURPOSE ...ttt et e r s e s sn et ma e 1

B. GENERAL SOFTWARE DEVELOPMENT ISSUES......cocovvumrrrreereereerenenn. 1

C. RESEARCH OBJECTIVES ...ttt 3

1. Investigative QUESHIONScccevtereriertentrntirestec et centeseeteessee e saasseansnens 3

2. SCOPE ettt ittt b et e s s e ene e b e e eneeas 3

D. ORGANIZATION ..ottt sttt sese s aseeeesesees et esaesaessasses 4

II. BACKGROUND......ooctitieeeriererteeeseetecesensessessteseeenesesesestssssteneententssessssessassassessassanes 5
A. SOFTWARE HISTORY ...ttt senees e eestesee et sesns e sne s 5

B. SOFTWARE REUSE ...ttt esesaest e e aesaasas s aas 6

1. Definition and USEoccoririiiiicececr et s e e e nme e 6

2. Back@round.........ccooeiniieeeeeee ettt ettt 8

C. SOFTWARE REUSE: LEGAL HINDRANCES........cccociiiriienrercnreeienenne 10

III. SOFTWARE REUSE LEGAL ISSUES ..ottt e seeseeasne s 13
A. INTRODUCTIONcoiiiieiecnieeteeeneneeeeeeeseestsseeeestestestesesssassnsssessasmssnsas 13

B. ASSUMPTIONS AND DEFINITIONS.......coooiiieeeietetesree e seeeeaeteseeeens 13

C. LIABILITY ettt ceten et et et e et sses st e s e esaeneans st sae st es e estasaennans 15

1. Liability on the basis 0f @ CONtract........ccoeceeveceeeceercieesrerreeceeece e 16

2. Liability on the basis 0f tort.......cccceeeiirvnereccerceeeceee e 16

3. Statutory Liabilifyccoceeeeieeieeeeeeeeeeeeeeee et 17

D. DATA RIGHTS ISSUES...... e cteecees e seeeteets et st ssast e ssssaens 18

1. CopYTIght LaWcooiniiiiiiniiiiniinriiieectcttcs ettt ne s 20

2. Patent Law ...coouiieiiiiiiiieicee ettt e e 22

E. THE EFFECTS OF FEDERAL REGULATIONS........ccociiiiiinecreneeenenne 22

vii

IV.METHODOLOGY AND ANALYSIS ...ttt 28
A. METHODOLOGY ...ttt eeeee e 28

Lo MEthOdS. ... 28

2. Justification of Methodology ChoiCe.oveweveureeeeeeeeeeeeeeeeooo 29

3. Methodology Perspectiveso.o.uveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeoeoo 29

4. Data Analysis Methodologycooveueecmeeeeeeeeeeeeeeeeeeeeeeoeo 30
BUANALYSIS oottt s e ee e 30

C. RESPONSES FROM PHONE CALLS ..o 31

V. CONCLUSION AND RECOMMENDATIONS........ocueerememeeeeeeeeeeeee oo 38
A. THE MAJOR CONCERNScoiititimeiceeeeeeeeeeeeeeeee e 38

B. INHERENT PROBLEMS ..ottt s e 39

C. RECOMMENDATIONS ..ottt eeeeeeeeeeeeeeee e eees e 40

1 EQUCALION <. 40

2. Acquisition Professional Recommendationsc.o.o.oooeeveveeeeovon, 41

D. AREAS FOR FURTHER RESEARCH..........ccooeoteeeeeeeeeeeeeoeeeoeooo 43

LIST OF REFERENCEScooommmminieeee et 46
INITIAL DISTRIBUTION LIST ..ottt 48

viil

I. INTRODUCTION
A. PURPOSE

The main purpose of this thesis is to address the concerns in the software reuse
community about perceived legal impediments in using and developing reusable
components. This thesis is intended for use by managers who are responsible for
formulating or implementing plans of operations for Software Reuse. It is intended to
give insight into some of the problem elements which should be taken into account
when using software reuse as an acquisition requirement. It is not an opinion of law, but
is intended to promote discussion and serve as the occasion for taking specific questions
to legal counse] for their opinion. By publicizing this thesis to policy makers and
implementers, the researcher hopes to initiate positive changes in the software reuse,
software acquisition, and legal communities.

B. GENERAL SOFTWARE DEVELOPMENT ISSUES

The software costs of Department of Defense (DoD) systems continue to rise due
to the need for larger and more complex systems and the increasing percentage of key
problems resolved through software development. Existing software development
methods are ill-equipped to deal well with the increased size and complexity of these
systems. To reduce software costs, there is a need for methods which address the

chronic problems faced by the developers of these systems. These problems include:
e Inefficient use of experienced engineers.
e Inaccurate estimates of development schedule and costs.

e Vague and incomplete requirements.

Corporate knowledge is seldom shared among Government contractors even when
software requirements are similar. As a result, experience from previous engineers is

often lost.

Inaccurate estimates of a project's cost and development schedule result from the
incomplete understanding of system complexities at bid and proposal time and from the
lack of accurate and consistent software metrics from past projects. Inaccurate estimates
mean that projects are at increased risk of failing to meet their schedule and budget. In an
increasingly competitive environment which dictates very aggressive bids and schedules,
there is little room for this type of error.

Because customers order "systems", Statements of Work often do not address
specific software requirements. The job of sorting out software requirements is then left
to system engineers who may not adequately address software impacts and issues. If
software requirements are vaguely specified, they will be clarified during design and
implementation, but not necessarily in a way that is consistent with the customer's needs.
If software requirements are incomplete, omissions may not be discovered until after
delivery. Either way, the result often leads to a dissatisfied customer.

In recent years much attention has been paid to software reuse because it is
recognized as a key means for reducing some of the problems associated with software
development mentioned earlier and obtaining higher productivity in the development of
new software systems.. Through reuse, prior expertise from those who originally wrote
the code is incorporated into the whole program, reducing error content thereby taking
advantage of the efforts of experienced engineers. The primary economic benefit of
software reuse is cost reduction. The cost of that portion of reused code includes only
the cost to purchase it from the reuse library with very little development cost. Reuse of
an existent software object generally costs much less than creating a new one and as a
result schedule and costs are more accurately estimated. The reduction in development
time allows engineers more time to validate the requirements thereby reducing one of the
inherent problems in software development which is vague and incomplete requirements.
In addition, software reuse has provided the technical benefit of reduced error content

leading to higher quality. [Ref. 1:50]

In DoD, however, many perceive that legalities are prohibiting widespread
software reuse. Although legal issues can impact the management of software reuse, if
treated within the context of a business strategy at the onset of a reuse program, risks and
liability can be reduced. The purpose of this thesis is to provide insight on what and how
to inhibit the legalities which do prohibit software reuse.

C. RESEARCH OBJECTIVES

The research objectives of this thesis are to identify what the inherent legal
acquisition problems prohibiting software reuse are, and what can be done to minimize
them. Electronic mail querys were transmitted and phone calls were made to assist in
attaining the research objectives. The respondents came from the Chief of Staff of the
Army, Intellectual Property Law Division;‘ the Defense Information Systems Agency
(DISA), Software Development Section: and the Marine Corps Tactical Support Systems
Activity (MCTSSA).

1. Investigative Questions

Investigative questions which will be addressed are:

a. What are the legal issues involved in reusing software?
b. How can the acquisition process address software reuse?
¢. What acquisition problems are inherent in software reuse?

d. What should the acquisition professional be aware of when required to
include software reuse initiatives in a contract?

2. Scope

This thesis is limited to implementing the software reuse concept only as it
pertains to acquisition issues. The thesis will address the following:

a. Identification of existing solutions to controlling some of the legal
problems associated with reusing software.

b. Identification of some of the acquisition procedures for implementing
and using the software reuse concept.

c. Identifying some of the problems associated with software reuse as they
pertain to the intellectual property rights.

D. ORGANIZATION

Chapter II defines software reuse and gives background information on how it
has evolved into its present uses. Chapter III identifies the main intellectual property
concerns which affect software reuse. Chapter IV explains the methodology used to
gather feedback and to aid in the analysis of the research. In Chapter V, conclusions are

drawn from the research and recommendations to correct the barriers are presented.

II. BACKGROUND
A. SOFTWARE HISTORY

Software upgrading has become increasingly important in this time of rapid
evolution of Threat Weapon Systems computer technology. Software has become so
prominent in U.S. weapon systems design that it has proven to be an influencing factor on
overall system design about 50 percent of the time since the early 1970's. [Ref. 2:2]
However, software as a major component of computerized systems is a relatively new
development. It was not until the late 1960's that hardware and software components of
digital systems began to progress along separate paths.

Hardware development has been revolutionary, producing faster and ever more
advanced and capable machines. This revolution has been brought about by the marriage
of the silicon chip and electrical engineering, and has resulted in such things as Very
High Speed Integrated Circuits (VHSIC). As a result, computers have exponentially
increased their capability. This revolutionary process has gone from 16 bit architecture
utilizing 60,000 word memories to 32 bit architecture utilizing 5.0+ million word
memories. [Ref. 3:2] Paralleling the hardware revolution has been a software evolution.
Although a slow process often being equated to a "black art," the evolution of software
has produced exponential results in such a short period. [Ref. 4:31] In approximately
forty years since the introduction of the first digital system, software evolution has
produced hundreds of languages spanning four levels of complexityl, multitudes of
design and instruction set architectures, and a plethora of development techniques and
styles.

Webster's dictionary defines software as "the entire set of programs, procedures,
and related documentation associated with a system and especially a computer system".

Software is at best conceptual, lending itself to the nature of an art more than science or

! Levels of complexity for computer languages are categorized into four groups: machine languages,
assembly languages, higher order languages, and application generators. [Ref. 4] Each language meets a
specific need at a particular level of programming

engineering. Yet, it is one of the most critical resources of the Department of Defense for
the production of today's sophisticated, high-technology weapon systems. The DoD
considers weapon systems software to be on the "critical path” of systems development.
[Ref. 2:1]
B. SOFTWARE REUSE

The notion of software reuse is not new. The concept of treating software
elements as black box components and composing systems based on well-understood
architectures which use those components was first proposed almost twenty-seven years
ago. The concept of software reuse was first formally introduced in 1968 when it was
foreseen as a subset of software development: a segment of the mdustry that would
design, code, test and distribute reusable software components, much the same as
hardware components, such as computer chips and resistors [Ref. 1:481]. It is only
recently, however, that significant progress is being made in this area. Since 1983,
companies have begun discovering that a reuse-based business strategy improves their
competitive and profit base. [Ref. 5:1] There are a couple of reasons for this trend. One
reason being the reduction in the defense budget which resulted in a major push for
Initiatives which reduce costs. Another reason is the continuing increase in the cost of
computer software which has overtaken the growth rate of hardware. The cost of

software is expected to continue to rise at phenomenal rates. [Ref. 6:1]

1. Definition and Use

"Reuse may be defined as developing a new software system using existing
software components probably with some new components as well". The object of reuse
1s to avoid building a new software product from scratch. [Ref. 7] Additional
amplification of the definition of software reuse is that it is the application of a reusable
component to more than one application system. Reuse may occur within a system (e.g.,
F-14A), across similar systems (e.g., M1, Bradley), or in widely different systems (e.g.,

user interface services). [Ref. 5]

The Toshiba Corporation has had an active software factory since 1976. The
software written there is for real-time, highly critical functions, such as nuclear power
stations, electric utility networks, chemical process plants, and steel rolling mills. One of
the concepts embodied at the factory is reusability. An article written in 1981 stated
software development was increasing at the rate of 18% per year, but due to profitability
constraints, the corporation could not afford to hire additional workers. Reusable
software made up the difference. [Ref. 1:11]

The secret to the Toshiba Corporation's success was through methodologies that
are currently available. The environment for development was consistent over the entire
time period; one computer with a standardized tool set. Code was targeted for use in one
of four mini or midi-computers, and more than five types of microcomputers. Languages
used were PL/7, FORTRAN, assembler, and TPL, which is a high level language for real-
time industrial control minicomputers. Cross-assemblers were used to convert the
developed code into object code for the targeted system. Registered programs were
stored in a library under two categories, standard programs and job oriented programs,
each of which could be accessed by entering a program name or function code from
developers terminals. [Ref. 1:12] In this way software reuse became an integral part of
their software development process.

Like the Toshiba Corporation, the Department of Defense also believes that reuse
principles, when integrated into its acquisition practices and software engineering
process, can provide a basis for dramatic improvement in the way software-intensive
systems are developed and maintained over their life-cycle. Therefore, the DoD has
elected to accelerate the incorporation of software reuse into its business strategy. The
reasons for doing so are to increase productivity, improve the quality and reliability of
software-intensive systems, enhance system interoperability, identify and manage
technical risk, and shorten development and maintenance time. [Ref. 8:1]

There is common belief among software reuse proponents that software reuse will

eventually happen whether the DoD takes an active role or not. The challenge is to

position the DoD to accelerate its use and to reap its benefits. The Department must
make a careful and deliberate analysis of the business, technical, and developmental

context in which a DoD software reuse strategy will be implemented.

2. Background

DoD must combat rising software development costs. Some 1995 estimates put
DoD's software costs as high as $42 billion. The commercial sector has shown that reuse
can reduce overall software expenses by between 10 percent and 15 percent and cut
maintenance costs by 20 percent. [Ref. 7:1]

Recent events such as the DoD Software Master Plan and the new Advanced
Research Projects Agency (ARPA) initiatives, have indicated a renewed interest within
DoD to implement an effective software reuse program. Although this goal was
attempted previously, it met with poor results. Two reasons why reuse failed were poor
management and failure to forecast legal inhibitors to reuse.

Management was poor because of poor organizational structure. Last year, in a
report accompanying the fiscal 1993 Defense appropriations bill, the House
Appropriations Committee said:

The department, with its decentralized approach, runs the risk of

permitting the many organizations participating in reuse initiatives to

misdirect or duplicate reuse efforts. [Ref. 8:75]

Three years after the Defense Department established its software reuse program,
DoD officials are restructuring it and putting a single office in charge. The result will be
that no longer will software reuse be a voluntary type program, but rather all DoD
components will have a role and accompanying responsibilities and will participate in the
Software Reuse Initiative (SRI). The Software Reuse Initiative came about almost solely
as a way for the Department of Defense to reduce cost in these days of reduced budgets.

The first SRI efforts will be to develop an SRI strategic plan that includes specific

objectives and projects.

Currently, DoD officials have set up a new reuse organizational structure. The
SRI program will be the responsibility of Emmit Paige Jr., Assistant Secretary of Defense
for Command, Control, Communications and Intelligence (ASDC3I). Paige is
responsible for coordinating SRI efforts with the UnderSecretary of Defense for
Acquisition and Technology, Director of Defense Research and Engineering (DDR&E),
and Advanced Research Projects Agency. [Ref. 8:73] The original reuse program
management responsibility was divided between the DDR&E and the former Director of
Defense Information, Mr. Paul Strassmen. This new SRI policy of centralizing software
reuse under the ASDC3I yields the primary benefit that only one organization will be
responsible for promulgating reuse policy within DoD and providing program direction
and oversight which has been lax in the past. This office will also be responsible for
ensuring the SRI program achieves its goals and ensuring budgets are used properly.

Under the SRI program a new software reuse office has been established within
the Defense Information Systems Agency's (DISA) Center for Information Management.
This office acts as the primary DoD reuse organization responsible for developing an
overall reuse plan, establishing reuse procedures and defining all reporting requirements.
The current acting director of this office is Colonel Carl Mclntyre. The program office is
responsible for overseeing implementation of SRI, however the Services and DoD
agencies themselves will be responsible for carrying out the reuse programs. This
procedure minimizes the inherent nature of a centralized decision authority to stifle
creativity, especially within the Defense Technology fields. This type of structure will
also provide the centralized control and management that congressional leaders found
lacking in the original reuse program.

Like all new defense technology programs, the SRI also has to be aligned with
overall Defense Technology policy. This means having established goals which are in
compliance with the current DoD goals concerning technology development. Through
the initiative, DoD has established reuse as an essential element of systems life cycle

management. The SRI has three major mission goals:

e Bring reuse technology into the DoD mainstream

e Develop an infrastructure that reduces the cost and risk of adopting and
sustaining reuse programs.

e Encourage, reward and institutionalize effective software reuse.

The second reason for the early failure of software reuse in DoD was the legal
barriers inhibiting reuse, specifically the handling of intellectual property rights.
C. SOFTWARE REUSE: LEGAL HINDRANCES

Since the DoD began investigating strategies for incorporating reuse into systems
acquisition and development, various groups have been examining the technical and
business aspects of software reuse. Issues such as acquisition regulations and policies,
library mechanisms and interoperability have been addressed. However, there has been
limited progress within the legal discipline in formulating guidance for Government
managers in software reuse in general, and in establishing and operating reuse libraries in
particular. [Ref. 6:2] The Central Archive for Reusable Defense Software (CARDS)
Program, sponsored by the U.S. Air Force (ESC/ENS), Hanscom AFB, MA., has also
been investigating business areas that impact software reuse. As a result, the CARDS
Program established an on-going forum, made up of DoD lawyers and contracting
officers familiar with software reuse, to examine legal issues and concerns related to
software reuse. [Ref. 8:1]

The forum determined legal issues pertaining to copyrights, policies and
regulations, and liability as it relates to warranty (or lack of it) need to be addressed.
However, the CARDS legal forums have focused on providing guidance to Government
managers in establishing and operating reuse libraries. Since Government software reuse
libraries have not existed for very long, many library managers are finding it difficult to
develop agreements and determine the best legal approach to operations and interactions

with others. In general, Government lawyers are not knowledgeable about software reuse

10

and in turn are not able to provide the necessary support to Government managers. [Ref.
8:1]
These issues pertaining to the legal aspects of software reuse are the primary focus

of the next chapter.

11

12

III. SOFTWARE REUSE LEGAL ISSUES

A. INTRODUCTION

Since 1986, a policy has existed within the Government to encourage reuse
among Government contractors. The policy favors allowing contractors to commercially
market software developed under Government contracts. [Ref. 10]

Research in acquisition since 1986 has shown that additional development in the
legal and contractual areas is needed to increase the effectiveness of reuse activities. The
general conclusion is that software reuse is still not addressed effectively in Request for

Proposals (RFPs), contractor proposals, or contracts. Reuse is now "disincentivized" by:

¢ Complexity of the legal and ownership issues

e Limitations of present Federal Acquisition Regulation (F AR) and Defense
Federal Acquisition Regulation Supplement (DFARS) and of proposed
changes, with regard to computer software

® Many stakeholders whose needs can enable or prevent successful reuse

e Current lack of adequate incentives to address those needs

B. ASSUMPTIONS AND DEFINITIONS

The following are assumptions which are made throughout this thesis:

* The software reuse library/archive is Government Owned-Government
Operated (GOGO) or Government Owned-Contractor Operated (GOCO).
This assumption significantly limits exposure because of the concept of the
"law of sovereign Immunity", which essentially provides for no
Government liability except in cases where statutes otherwise provide.

¢ The library/archive is intended for Government purpose use only. [Note:
Libraries that distribute components to subscribers for the purpose of
commercial software development are not included in this thesis.]

* Subscribers and suppliers are Government personnel, Government
contractors or prospective Government contractors.

® The library/archive contains Government Off The Shelf (GOTS),
Commercial Off The Shelf (COTS), and public domain components. For

—

COTS components, the library supplies the name, address and telephone
number of the owner, with a description of the component.

e The library/archive does not negotiate or determine terms and conditions of
use with respect to third party users (in the event of redistribution). The
library/archive does not act as either dealer/reseller or as an agent for a
supplier or subscriber because its liability would rise dramatically.” The
subscriber must contact the supplier directly for purchasing, licensing and
/or maintenance agreements.

e The library/archive contains no classified components. Government
agencies charged with setting standards for computer systems which
process classified material have identified no system accessible by modem
over commercial telephone lines whose safeguards are adequate for the
protection of classified Government materials.

Table 3-1 shows operational definitions prepared by the Joint Integrated Avionics
Working Group (JIAWG) Software Task Group. Definitions are adapted from JJAWG

(1990, item 1.2). These operational definitions may not correspond precisely with legal

definitions.

2 The role of dealer/reseller and agent may be inappropriate for other reasons, such as Department policy
against the Government actively competing in commercial arenas (see DoDI 7230.7, General Policy).

14

Reusable Software Term

JIAWG Definition

Reusable Software Object (RSO)

Life-cycle objects that are created during the software development
process, and have the potential for reuse. The objects may include
(but are not limited to): requirement specifications, design
documents (both top level and detailed), source and object code, test
specifications, test code, test support data, user manuals,
programmer notes, and algorithms. These objects may be textual,
graphical, or both; they are usually stored on electronic media; and,
in DOD-STD 2167A and in DFARS Parts 270 and 272, they are
defined as computer software and computer software documentation.

Developer A contractor who creates and makes use of RSOs, which may be
incorporated into systems developed for the Government. May be a
prime or a subcontractor.

Unlimited Rights Software RSOs that are developed under a Government contract which are

delivered with unlimited rights to the Government.

Restricted Rights Software

RSOs created at private expense that are not in the public domain and
which are to be delivered (to the Government) with less than
unlimited rights.

Licensed Software

RSOs developed for delivery under Government contract, that the
developer retains the right to license for third party use on other
Government contracts. This is applicable only if the alternate
proposed license approach proposed herein is used.

Software Reuse Library

An element within a software engineering environment used to store
and maintain those RSOs that are potentially reusable within and
across major programs.

Reuse Library Catalog A centralized source of information about the RSOs that populate the
Software Reuse Library.
Reuse Library Retrieval Selecting items from a Reuse Library for systems application.

Table 3-1. Operational Definitions of Terms for Software Reuse

C. LIABILITY

8:2]

There are two types of legal issues that are pertinent to managing software reuse.
They are: the responsibilities with respect to others’ intellectual property rights and
possible liability resulting from qualifying and distributing reusable components. [Ref.

15

When researching the legal parameters of software reuse it was found more often
than not, that managers customarily talked in terms of liability. Liability in reusability
seems to be especially a concern within the DoD, having appeared in several of the
articles reviewed. In phone conversations, both the Army Intellectual Property Law
Division and DISA listed liability as an area of concern, and it is mentioned in the Report
of the DoD Ad Hoc Software Strategy Group Meeting. The articles reviewed noted that
in today's litigious society, liability must be a concern. [Ref. 9:180] There are three bases
of liability: contract, tort and statutory.

1. Liability on the basis of a contract

A contract basis is derived from agreements which might be oral or written, but
which better practice says should be written. Essentially, liability in contracts results
anytime one party or the other breaches a term (provision) of the contract. For example a
subscriber agreement should provide a number of terms and conditions, one of which
treats payment (i.e. a subscriber agrees to pay an access charge). Failure to pay access
charges as prescribed (amount and frequency) is a breach of the agreement, unless there

is some defense which the subscriber could raise (such as excusable delays or waivers).

2. Liability on the basis of tort

A basis in tort exists if there is some legal duty extending from the library to one
of the participants (subscriber, supplier or perhaps a third party such as a subcontractor).
[Ref. 7:1] There are frequently occasions when duties extend not from the software
reuse library, but from the subscriber to the library. Such a duty does not derive from a
contract, but from the common law of tort. For example, a library for reusable software
components which holds itself out to a community of subscribers to be qualified to
conduct testing for conformance of components to standards, such as MIL-STD-1815,
and which in fact does so, has a duty to apply that standard of care which pertains to a

person assuming such a role. That 1s, the library, having undertaken to do the testing and

16

certifying of components for conformance based on the results of that testing, has a duty

to adhere to that standard of care appropriate for that role. [Ref. 7:2]

The standard of care required in administering reused software must be defined in
terms of whose standard of care the reused software is to be judged by. The question
must be asked, is the judgment standard to be that of a registered software engineer or
that of a technical librarian. The standard of care determines how well the library must
perform its function as a tester and judge as to conformance of the parts.

When the contracting officer advocates the use of software reuse strategies within
the acquisition plan, he should expect that contractors will likely refuse liability for the
failure of reused software. Therefore the contracting officer should be aware that if the
software reuse library from which the contractor obtained the reused code performs its
role negligently (breaches its duty to adhere to the appropriate standard i.e. allows
substandard code to be stored for reuse), then a basis for a claim in tort might exist,
whether or not a contract exists between the supplier or subscriber of components and the
library.

3. Statutory Liability

A statutory basis for liability does not require a contract. The Federal copyright
statute prescribes violation known as "willful copyright infringement” for which there are
provided penalties including fines up to $100,000 and imprisonment. [Ref. 7:3]

When applying reuse, the different types of liability listed above must be taken
into consideration. However, liability concerns can be reduced through the effective use
of intellectual property laws which cover data rights, patents, and copyrights.

A U.S. Government employee, acting within the scope of his or her duties, cannot
be named as a defendant in a copyright or patent infringement law suit. This immunity
extends even to a Government contractor, but only if performing on a contract for the

Government. The Government cannot be stopped from using the copyrighted work or

17

patent idea but will be liable to the owner for compensation for the Government’s use of

the work or idea.’
D. DATA RIGHTS ISSUES

The majority of those interviewed and the majority of papers reviewed refer to the
problem of handling data rights. Data rights are a constant source of confusion. Data
rights are hotly debated on a continual basis between system program offices and
contractors, each trying to protect what they believe their rights to be. Numerous issues
leave many unanswered questions. If the contractor uses software developed at his own
expense to develop the program software, does he have to provide his developmental
software to the Government? What do restricted rights really mean? [Ref. 1:19]

Data rights have been constantly evolving over the last seven years, and it is still
uncertain as to where they will end up. [Ref. 1:19] One view is that software needs to be
differentiated from technical data.

The function and purpose of software is different from that of technical data.
Software performs tasks; technical data merely conveys information. [Ref. 7:4] Because
of this, the economics underlying the development and marketing of software and
technical data are significantly different. Software generally involves significant research
and development costs which can only be recouped through the marketing of the product,
whereas often technical data are generally produced as an ancillary step in the process
leading to production of the actual item to be marketed.

The critical point here is that the capital cost of design and development
(including the cost of software tools and/or Computer Aided Design/Computer Aided
Manufacturing programs which aided in the development effort) are recouped as part of
the sale of the system, not through sales of technical data that might have been generated
in developing the system. DoD's policy with respect to hardware systems takes this into

account by treating hardware systems in a manner different than it treats technical

328 U.S.C. 1498.

18

documentation. DoD's present policy with respect to software, however, is heavily
technical data oriented, and does not allow software design costs to be recovered in the
same manner.

Thus, the economics of software development indicate a need for taking software
(and the documentation which is an integral part of its development and evolution) out
from the quasi-technical data treatment it has thus far received. With regard to
development costs and capitalization, software is in many ways more like a hardware
component than it is like the technical documentation which supports the hardware. The
DoD should consider technical and economic similarities between software and hardware,
as well as the dissimilarities between software and technical data. [Ref. 10:3,4]

Differentiating software from technical documentation and associating it more
with hardware systems seems to be one of the more important problems with data rights
in software. In hardware systems, the Government has rights to the data underlying the
development of the hardware device, but continues to purchase the manufactured
hardware item on a piece by piece basis. Since software really only exists on paper or
magnetic media, it is treated exactly the ‘sa.rne as technical data, and the contractor has no
ability to sell it to the Government on a piece by piece basis since the Government feels
that it has the rights to the product. There is no manufacturing process, other than simple
duplication, in replicating software, further blurring the distinction between hardware and
software. Little has been done to change this situation, resulting in a continual strain on
Government/contractor relations. [Ref. 10:5]

The Federal Government procurement regulations for the acquisition of computer
software are based on the Federal Acquisition Regulation (FAR) for civilian agencies
and the DoD FAR Supplement (DFARS) for the DoD. The DFARS requires that
unlimited data rights for any software developed in whole or in part by Government funds
be assigned to the Government. The rationale for unlimited rights is stated in DFARS
227.472-1(a):

19

For defense purposes, millions of separate equipment and supply items,

technical data resulting from research and development and production

contracts must be obtained, organized and disseminated to many different

users. Finally, the Government must make technical data widely available

in the form of contract specifications in the interest of increasing

competition, lowering costs, and providing for mobilization by developing

and locating alternate sources of supply and manufacture.

Industry, on the other hand, views this problem in a different light. Industry
representatives of the Data Technical Working Group (DTWG) reached its own
conclusions about unlimited data rights. [Ref. 8:11]

The DTWG found that industry is reluctant to invest in new technology for the
benefit of the Government because of sweeping data rights demands by the Government,
and apprehensiveness about the loss of proprietary information. This creates a climate

unfavorable to the transfer of such technology to the Government.

The Government is failing to obtain the most innovative and creative computer

software technology from its software suppliers. Thus, the Government has been

unable to take full advantage of the significant American lead in the software
technology for the upgrading of its mission-critical computer resources.

Another aspect of this problem is whether or not software should be considered
under copyright law or patent law. The problem first developed in 1980 when Congress
passed a bill that extended copyright protection to software, making the event the first
time that a technology was considered under copyright laws. [Ref. 11:79] Congress
compared source code to a book, not realizing that software was instead a technology that

could rightfully be covered under patent law. [Ref. 11:79] The next several paragraphs

examine the difference between copyright and patent laws.

1. Copyright Law

Copyright law was initially established to protect the expression in a work, and
not the ideas in the work. [Ref. 11:80] There are three different types of copyrights:

artistic works, factual works, and functional works.

20

e Artistic works generally enjoy the broadest copyright protection. In
general, more elements of artistic works (like a play) will be considered to
be expression than in a historical work (like a biography). The law gives
artistic works the most protection to encourage artists to seek ever more
profuse ways of expressing themselves on themes of enduring interest (the
10,000th novel about love may still teach us something about love,
particularly if the law forces it to present it differently than the previous
9,999 novels).

e Factual works have a narrower scope of copyright protection than do
artistic works. Factual works fall in the middle because historians, for
example, need to be able to draw more on each other's work to advance the
progress of knowledge.

e Functional works are afforded a very narrow scope of copyright
protection. (Truly functional works, such as chairs or microwave ovens,
are because of their functionality not protectable under copyright at all.)
More things will be considered to be ideas in functional works (like an
engineering drawing) than artistic or factual works. Functional works have
the least protection because bridge engineers, for example, have a great
need to draw on the work of other engineers who have designed good
bridges so they in turn can build safer and more reliable bridges.
Furthermore, patent protection is available to reward truly innovative
engineering ideas.

Software initially seemed to be like a literary work to Congress because it is
written out in source code, just like a draft of a book. Concentrating on this aspect of
software obscures its functional aspects and the engineering process by which it is
developed. It is more appropriate to think of software as akin to an engineering drawing
than to a novel. [Ref. 11:83]

This divergence of opinion between ideas and expression has caused mixed
judicial decisions, further clouding a clear understanding of what copyright status exists
for software. [Ref. 11:80] Copyright law also works against reuse in the control of
derivative works, with the holder of the copyright having the right to control the

derivative work. [Ref. 11:85] As stated previously, copyright law is used to protect

21

interests in software. Patent law also protects interests in software but under different
circumstances.

2. Patent Law

Patents derive from a body of law that is designed to protect innovative or non-
obvious processes, machines, manufacturing methods, compositions of matter, or any
- improvements to these. [Ref. 11:81] Patent law forces the inventor to specifically show
what is patentable, versus copyright law which "covers the undifferentiated whole of a
protected work and unspecified aspects of it that courts may later construe to be an
expression”. [Ref. 11:85] Patent law also allows, and even encourages, derivative works
to further the state of the art, severely limiting the risk of liability to the user. [Ref. 11:85]

It is clear that patents vs copy rights is a confusing legal issue, although it is not
clear how it should be best resolved. It is unclear if Congress should modify the past
legislation concerning software to remove some of the confusion, or if they should
modify both copyright and patent law to handle software more reasonably. [Ref. 12]

The following section describes the effects of the present and proposed FAR and
DFARS on software ownership, liability, and incentives to reuse software assets. The
focus will be on the business impact of these regulations, as opposed to the legal aspects.

E. THE EFFECTS OF FEDERAL REGULATIONS

Software developers are concerned with a number of regulations which effect
them when working for the Government. These regulations:

Give the Government the right, (even if you had developed software at private
expense!) to take your software and give it to the Government's support service
contractors (perhaps your worst competitor).

Of course the support service contractor is limited in what he can do with that

software. But if a competitor gets your source code, it is then in the brains of the

competitors' people. From a legal viewpoint, your software no longer has any protection

22

as “trade secrets”, because the knowledge was given them as a result of the Government
contract. [Ref. 6:1]

The FAR and DFARS give guidance on how procurement is to be done by and
with the Federal Government and DoD respectively.

The regulations affecting right to software are covered in the FAR Section
52.227-14 (Rights in Data) for the non-defense agencies and for defense agencies in
DFARS Part 227.4 [Ref. 6:1] and can be applied to common questions concerning
software reuse.

1. FARvs. DFARS

Legal responses to Common Questions of What Software a Contractor Can
Reuse based on FAR Part 52.227-14.
a) What software can be reused in the commercial market?
A contractor who develops software under a Government contract is entitled to
copyright it for reuse outside the Government market. A subcontractor developing
software for a prime contractor under a Government contract can assert the copyright in
software (or negotiate with the prime to give him that right).

b) Can it be reused for another contract with a different

Government agency?

A contractor can reuse software developed under an Air Force contract or a Navy
contract. But keep in mind that the Government cannot pay twice for the same software.
For the Navy contract, the Government can only pay for the costs of putting together the
software, putting together the documentation, and delivering it. The Navy is then entitled
to unlimited rights. A contractor cannot enter into a license agreement with respect to the
software delivered to the Navy and cannot charge a royalty (the original developing

organization of the reused software has those rights).

23

¢) Arethe Government's "unlimited rights" the same as

“exclusive rights”?

Case law says that if a contractor develops software under a Government contract,
the Governments "unlimited rights” do not mean "exclusive rights.” The contractor still
has the right to sell the software. However, if the contractor sells it to somebody who is
working on a Government contract and charges a royalty, the cost cannot be passed on to
the Government.

The present version of the DFARS was published as an Interim Rule in 1988.
When published, this interim ruling caused sufficient comment from industry and
Government that a new draft "advanced notice of proposed rule making" was published
on October 15, 1990. The intent of this proposal is to replace the current DFARS 227.4
(Interim Rule, 1988) and FAR 27.4 with a single regulation addressing rights in technical
data and computer software for all Government agencies. ~Considering the newness of
the software field, this appears to have been a reasonable approach at the time. In
practice, its shortcomings become clear:

After a period of frustration, it became apparent that it was Inappropriate
to acquire software as if it were technical data. (The cost of acquiring
Government-wide rights-which is what the technical data rights policy
provides- to software that was needed at only one Government installation
was impeding the acquisition of such software). So software (at least in
machine-readable form) eventually became differentiated from technical
data in the regulations, although software and technical data policy
continue to be somewhat intertwined. Thus, while rights that attach to
proprietary software are different from those that attach to technical data,
the same standard data rights clause is nonetheless needed to acquire rights
in both. [Ref. 13]

Today, the issues are complicated because both the FAR and DFARS have come
full circle and treat software as though it were the same as technical data. The FAR and
DFARS have basic clauses that address both subjects: FAR 52.227-14, Rights in Data,

24

and DFARS 252.227-07013, Rights in Technical Data and Computer Software. This is

true despite the fact that technical data and computer software are very different [Ref. 5].

In Table 3-2, notice how definitions of computer software and data (in the first

two rows) are different for the FAR and the DFARS. In the third column, the proposed

change will continue the combined treatment of data and software. As long as this is the

case the issues will continue to be confused.

establish copyright claim.
Government granted
paid-up, nonexclusive,
irrevocable worldwide
license to reproduce,

prepare derivative works,

copyright unless software
is considered a "special
work," when software
becomes sole property of
Government and is

treated as unlimited

Terminology Federal Acquisition Defense Federal Proposed Regulatory
Regulation Acquisition Regulation | Change (October 1990)*
Supplement
Software Computer programis, Computer software and Combined treatment of
computer databases, and | computer databases data and software.[Ref 5]
documentation thereof (DFARS 227.471).
(FAR 27.401) Treats documentation as
technical data, not
software.
Data Recorded information, Recorded information, -
regardless of form or the | regardiess of form or the
media on which it may media on which it may
be recorded. Term be recorded (DFARS
includes technical data 252.227.7013).
and computer software
(FAR27.401).
Copyright Contractor authorized to | Contractor authorized to | More favorable than

before. Does not include
Government right to
distribute copies, as now
found in DFARS, but
does allow full disclosure

for Government

25

perform, or display
publicly by or on behalf
of the Government.
License does not include
right to distribute
software to public (FAR
27.404(H)(iv)).

rights software (DFARS
227.476/252.227-7020).
Government granted a
nonexclusive, paid-up
license to reproduce, to
distribute to the public,
to perform or display
publicly, and to prepare
derivative works and
have others do for
Government purposes
(DFARS 227-7013(3)
227.480/252.227))

purposes. No resolution
of derivative works

issues.

Government purpose
License Rights (GPLR)

No definition.

Right to use, duplicate,
or disclose data and
software, in any manner
for Government
purposes. This includes
competitive procurement
but not commercial
purposes. Government
can authorize others to

use for Government

purposes.

Newly applies to
software; contractor
retains exclusive
commercial rights for a
negotiated period of
time. Allows negotiation
in cases of mixed funding
by developer or

Government.

Table 3-2 Comparison of FAR, DFARS, and Proposed Regulatory Change®

This thesis only scratches the surface of the complexity in the many buyer-seller

relationships found in the Government software arena.

These include relationships

among owners of reusable software assets, developers, third-party developers, and

customers (see Table 3-1 for explanation of terms). Figure 3-1 illustrates the number and

“ STARS (1991): FAR (1988), DFARS (1990).

26

variety of sources for software assets that are reusable to a greater or lesser degree. The
single largest collection of existing software is found in the DoD inventory (lightly
shaded in the figure), some of which can be traced back three decades. A second
category is public domain software (unshaded). The third category of reusable software
assets (more heavily shaded) represents organizations with the mission to develop
software for sale. Organizations in this category are now seriously affected by the
Government’s regulations and procedures for acquiring reusable software. These
organizations' concerns include questions of ownership, liability, and incentives to both
create reusable software and to reuse existing software.

The results of interviews conducted with DoD software personnel addressing

these concerns are presented in the next chapter.

Yendor(COTS)

Organizion
B*
Rourable Arrots

3

Figure 3.1. Software Sources.

27

IV. METHODOLOGY AND ANALYSIS

A. METHODOLOGY
1. Methods

This thesis relies on evidence gathered through literature review, telephone
interviews, and electronic mail queries to identify what legal issues are prevalent in the
software reuse industry and what is currently being done to control and clarify those
issues. Those interviewed consisted of legal officers from the U.S. Army Intellectual
Property Law Division, Software Development Specialists from the Defense Information
Systems Agency (DISA), and Software Procurement Specialists from the Marine Corps
Tactical Support Systems Activity.

There are two steps in completing the evidence gathering for this thesis. First of
all, a series of open-ended telephone interviews were conducted to determine what
intellectual property issues confronted the software reuse industry, more specifically the
area of patents, data rights, and copyrights. These interviews also attempted to determine
what Government and DoD personnel encounter when working with developers on
intellectual property issues. These questions were put forward to gather opinions on the
subject of software reuse and patents. The response was that patents on software were
going to monopolize the basic concepts involved in software reuse and that encouraging
the expansion of software patents was not a good idea.

Based on this initial question, a revised question was posed and a more structured
response was requested. The interviews were conducted with the researcher posing the
basic question and then following up with additional questions on an open-ended basis
based on the response. The responses were then compared and collated into one response

representing the majority of answers received.

28

2. Justification of Methodology Choice

The method of choice for research depends on (1) the degree to which the
investigator can control the situation, and (2) whether the emphasis is on contemporary
versus historical issues. [Ref. 14:16,17] Within these three conditions are perspectives
that must be considered in determining the research design:

a. The degree to which the research problem has been crystallized (the study may

be either exploratory or formal).

b. The method of data collection (studies may be observational or survey).

c. The power of the researcher to affect the variables under study (the two major
types of research are the experimental and the ex post facto).

d. The purpose of the study (research studies may be descriptive or causal).
e. The time dimension (research studies may be cross-sectional or longitudinal).
f. The topical scope, breadth, and depth of the study (a case or statistical study).

g. The research environment (most business research is conducted in a field
setting, although laboratory research is not unusual; simulation is another
category, somewhat similar to laboratory research). [Ref. 15:59]

3. Methodology Perspectives

a) Exploratory versus Formal

The difference between these two types of studies pertains to the degree of
structure and the objective of the study. Exploratory studies are rather loosely structured
with the objective of developing hypotheses for future studies. Formal studies use a more
structured approach and take the hypotheses generated by an exploratory study and
attempt to prove them. [Ref. 15:60]

The first step of this thesis was exploratory in nature, with the outcome being a set

of guidelines to look for when implementing software reuse programs.

29

b) Observation versus Survey
In observation studies, the researcher observes some situation without asking
questions of the people involved in the situation. Surveys allow the investigator to probe
people for their responses to questions. Within the context of surveys are formal surveys
and interviews that are either conducted through the mail, electronic mail, over the phone,
or in person. [Ref. 15:60]

A combination of observation and survey was thought to be the best methodology
to determine the current state of software reuse legal issues. Initial research indicated that
there was a very limited list of programs that had attempted, or are currently
implementing reuse. In addition, it became apparent that reuse legal issues were very
sporadic and ad hoc, so much so that a formal survey was determined not to be
appropriate at this time. Based on these problems, it was decided that telephone
interviews, and electronic mail queries were the most appropriate instrument for
gathering information.

4. Data Analysis Methodology

The responses to the structured interviews were analyzed by determining
appropriate categories of responses for each question asked, tallying the responses in each
category, and then comparing the tallied responses with actual application and analyzing
the similarities and differences. Most of the responses to the questions lend themselves to
opinion.

B. ANALYSIS

The term software reuse in its basic form was found to be highly technical. To
apply it to actual activities however requires a whole other set of deliberations, i.e. that of
major legal considerations. Specifically the major concerns are that of intellectual
property rights i.e. data rights, patents, licenses, and ownership. The FAR and DFARS
clearly are the guiding tools which govern how contracts are to be patterned and

interpreted when presiding over software reuse issues. This guidance in the software

industry as a whole, not just software reuse, is lengthy, complicated, and consists of much
duplicity. The majority of legal software reuse issues such as data rights, and patents, are
no different than original software issues.

The analysis of the findings focuses on the areas discussed in the previous chapter
and then proceeds to propose explanations on why the DoD has run into so many legal
impediments to their software reuse program. Finally, the research and investigative
questions will be addressed, and conclusions will be drawn based on the hypothesis
analysis.

The personnel selected represented a cross-section of individuals who are or have
been involved with reuse in the DoD community. Each question from the interviews is
presented along with the responses received. An aggregate of the responses follows each
question. No statistical analysis is performed using these data. Quotations are provided
on a non-attributional basis due to the majority of people requesting anonymity. The
interpretations of the results follow each response respectively.

C. RESPONSES FROM PHONE CALLS
Question 1. How does the software reuse industry view software patents?

The responses range from “software patents will have an extreme effect” to “they
will have somewhat of an effect” on the creativity which goes into software development.
One hundred percent of the respondents indicated that there are no clear criteria to
distinguish between software which is patentable and that which is not. Two of the
respondents felt that protection is necessary for those who build software from scratch.

Analysis. Many concerns have been expressed recently by the computer industry
about software patents. Programmers have a legitimate fear that patents will be granted
that monopolize the basic concepts that are involved in user interfaces or the algorithms
that programmers need to write effective software. It has been claimed that the U.S.
Patent and Trademark Office seems to be willing to issue virtually any software patent

presented to it, that it lacks the facilities to search out prior art in the field, and that the

31

personnel available are so limited that the Patent and Trademark Office is prevented from
effectively examining patent applications. Patent applications stay on file in the Patent
and Trademark Office in secret for an average of about three years before they are issued
and published. [Ref. 7] The results are businesses may invest considerable resources to
develop and establish a product that suddenly becomes infringing when a patent springs
into existence. The U.S. patent system, unlike those of many other countries, provides a
more or less absolute monopoly for the patent holder. A patent holder can charge as high
a price for a license as it chooses and can refuse licensing altogether. Yet, software
algorithms, just as much as any other advances, are deserving of the incentives and
rewards of the patent system.

Software patent exposure is still relatively new to most industries, however patent
attorneys view software patents as a potential bombshell with respect to cutting down
incentives for the development of software technology. This is mainly because there are
no clear criteria for discriminating between software that is patentable and software that is
not. There are not enough court decisions on record as of yet to establish a pattern.

When software was used in the process of vulcanizing rubber’, the Patent and
Trademark Office has said, software is now patentable. There is great worry about what
software patents will do to the inventiveness that is involved in software. Small
businesses cannot afford the legal fees for patent applications, enforcing one's patents
when necessary, and defending against patent infringement lawsuits filed by others. Even
for large businesses, patents for software can become a legal nightmare, because
companies can make huge investments, and subsequently find out their product has
infringed upon another’s patent rights.

There is major concern on how to protect the person who has invested money in
building software from scratch. Software patents may stifle creativity at some point. If

someone is investing money in building a product, there has to be some protection that

* To treat (rubber) with sulfur and heat, thereby imparting greater strength, elasticity, and durability.

allows him or her to get a return on that instrument regardless of whether it is being used
as original software or in pan as reused software.

There will in the future be a great deal of litigation that is going to arise in the area
of software and software reuse patents and, especially with software reuse all the
complications that are involved with third and fourth parties. It's going to be a great
challenge for companies large and small to navigate the software patent maze.

Question 2. What rights should software technology inventors have with respect
to their inventions?

None of the respondents felt that software technology inventors should give up
all their technical data rights to the Government. However, the majority of the
respondents indicated that if compensated fairly inventors would he willing to participate
in most software reuse programs.

Analysis. The history of software protection is based on many cases since the
early 1980's when it was argued that computer programs should not be protected by
copyright, in part because it would give too great a monopoly to computer programmers.
Another argument that was made was that the patent system was a more appropriate
system for the protection of software. According to this argument, software is primarily
concerned with algorithms and processes that are implemented, these are ideas that are
applied in a certain way in a technological device, and that this was therefore a proper
subject matter for patent protections. The patent system had safeguards--a way of
assessing prior art, a higher standard for giving protection, and a shorter term of
protection than the copyright. The fundamental issue for copyright protection of software
from the developer's perspective that is now being confronted in the courts is just how far
section 102(b) of the U.S. Copyright Act will extend. That is the section that exempts
ideas and methods from copyright protection processes,

Question 3. How would you improve the current patent system as it pertains to

software reuse?

33

Only a small number of the respondents felt qualified to answer this question.
The response was that the patent process for software was "entirely too long", and by the
time a patent was received much of the technology had already been compromised to
competitors.

Analysis. A common consensus is to reduce the current life of patents from 17

years to a shorter period. The patent lifetime should also begin at the date of application
rather than the date of issue. Some patents spend so much time in the application process
that their life nearly doubles.’

Requiring the mandatory licensing of patents is another idea, while still another is
to restrict the rights of patent holders that are not making use of the patent. Finally, there
is a need to restrict the abuses of the patent system by companies that buy patents and
then seek license fees from other companies.

Government procurement regulations are different from other systems for
allocating intellectual property rights and responsibilities in that they are written by the
consumer. As a result, some of the procurement regulations have seemed unbalanced in
favor of the Government as contrasted with more traditional areas of intellectual property
law which tend to favor the creators of works. [Ref. 7:7] Emphasizing the need to
provide incentives for creative, skilled people to motivate them to continue to produce
items that would benefit society, the software industry has claimed that broad claims of
rights by the Government inhibit their ability to commercialize software technology and
thereby recoup their investment. An example of this is industry's concern that if they

permit the Government to have access to valuable source code and other technical data

® An example of a patent that took a long time in the application process is one issued in July 1990 to
Gilhert Hyatt covering the invention of the microprocessor (Single chip integrated circuit computer
architecture, U.S. Patent 4,942,516). The Inventor's first application was received in 1970. However, in
Hyatt's case, even if his patent is successfully defended he will get royalties only for seventeen years after
the patent was issued, since he was not involved in the commercial development of the microprocessor and
has as yet received no royalties. Some developers can keep their invention a trade secret while in the
application stage, thus effectively lengthening the life of the patent.

containing proprietary information for reuse, this material may end up in the hands of
their competitors.

Question 4. What impact on reuse does industry’s concern that their proprietary
data will fall into the hands of their competitors, have when contracting with the
Government?

The respondents indicated when dealing with industry their main concern was that
the Government is known for requesting full rights to technical data, and that software
reuse would only reduce the amount of royalties they would receive. One of the
respondents mentioned that reuse already goes on within the company, problems only
arise when the Government wants to allow another contractor to use their software.

Analysis. Reuse has been addressed from two perspectives: internal reuse and
external reuse. Internal reuse, in which the company reuses components internally is
happening today and there are no major problems regarding intellectual property rights.
External reuse, though, will have to occur if we are going to create a reuse industry, and
in order to make this happen the Government is going to have to allow industry to
maintain rights to the intellectual property that they have created to prevent
compromising their intellectual property rights to their competitors.

One of the big problems is industry's tendency to identify its proprietary rights by
designating the data as limited rights data when it delivers software to the Government,
and third parties that are not Government contractors are precluded from getting that data.
If we are going to have a reuse library that is going to be effective, there should be a level
in that library where the development of derivative software by third parties does not
require any passage of royalties or incentives back to the contractor that developed the
original software. Otherwise you will have an administrative nightmare. The results
would be a succession of derivatives where it would be impossible to determine at what
point you were in this line of progression. A suggestion is that after the second derivative
contractor any reimbursement to the developer would stop. Beyond the second

derivative, the administrative cost would he likely to exceed the remuneration to the

35

developer. As for Government infringement on the proprietary rights of the software
developed by contractors, that depends very much on the particular agency involved. In
general, Government regulations pertaining to data rights are not necessarily viewed as
too restrictive however, they are viewed as too confusing. The FAR regulations are
viewed as good, yet the DFARS are viewed as lousy. About 90% of DFARS data rights
regulations are viewed as being redundant. [Ref. 7:8]

Unfortunately, the final answer to any dispute over rights to reuse a component
ultimately becomes avoiding reuse and developing the code internally. The economic
realities will drive the decisions that are made-if a prime contractor is obligated to deliver
something and he cannot get the rights that he is promised from a subcontractor then he
will in all probability make arrangements to program it himself. While this defeats the
purpose of reuse, these are still the economic realities under which we will be operating

for at least the next few years.

V. CONCLUSION AND RECOMMENDATIONS

There are many issues which are critical to effective software reuse, however, as
highlighted throughout this thesis there are some core legal impediments to software
reuse. This thesis has attempted to enlighten the reader on legal issues that must be

resolved in order to establish a successful reuse industry.
A. THE MAJOR CONCERNS

There are many unknowns with respect to interpretations of software reuse in the
FAR and DFARS. Contractors have concerns about ownership rights which raise
questions about the extent of their intellectual property rights (i.e., copyright and patents).
Also, liability and licenses agreements need to be established or addressed.

Access to and protection of proprietary software are issues which can potentially
inhibit large scale software reuse. For software reuse to be successful, public access to
reusable assets is essential. Proprietary software issues must be addressed that would
allow this public access but also protect the investment by the developers.

There were several conclusions reached as a result of this thesis, however it is
obvious that the practice of software reuse is evolving even with the myriad of stumbling
blocks placed before those who wish to advance its practice. Large-scale reuse will
probably require a registry that allows tracking the source of original development and
modifications for each component. The establishment of a national registry for reusable
software components is needed in order to track the extent a particular string of software
is reused. Developers would like to see the Government assume all legal liabilities when
the contractor is required to implement reused software in its development plan. This
practice would probably conflict with federal law.

It is not likely that the uncertainties involved with intellectual property protection
for software and liability for software malfunction will be resolved soon. In the realm of

intellectual property rights, software reuse raises few, if any, fundamentally new legal

38

issues that have not been confronted before, but large-scale reuse will likely result in
these issues being encountered more frequently and in more complex ways.

In order for a large-scale reusable components industry to develop, it is beneficial
for mechanisms to be implemented that can appropriately reward developers who modify
and add value to existing components, while still protecting the rights of the developers
of the original components. Developers feel that patents are a viable way of protecting
their ideas. Extensive research has been done in the area of patenting software.
Software patents may have significant potential as a mechanism for encouraging the
development of reusable components, however, there are many uncertainties about the
validity of software patents and the impact of patents and patent infringement lawsuits on
the software industry that need resolution.

Licenses for reusable components have become the means by which developers
are recouping royalties for the authorized use of their developments. Licenses however
are not yet completely irrevocable, do not yet allow liberal rights to produce derivative
works, do not yet require the developer to fix errors, and do not yet contain provisions for

determining who is allowed access to components.

B. INHERENT PROBLEMS

A report by The National Security Industrial Association (NSIA) urges that the
Government continue to support initiatives in the area of software data rights

No data rights issues emerged that were uniquely associated with reusable
software (emphasis added). Data rights issues associated with software reuse are very
important and must be resolved. However, it turns out that the set of problems associated
with rights to reused software are precisely those that have been and are currently being
addressed by Government and industry. (NSIA 1990,21)

The Government should continue to vigorously support on-going initiatives in the

area of software data rights. Related to data rights, nothing additional needs to be done

39

by the Government in order to promote the concept of reuse, other than to support the
software data rights initiatives already in progress. (NSIA 1990,21)

Liability issues will continue to plague the software reuse industry until solid
mechanisms are put into place which will identify who bears the liability. It is in the best
interest of the Government not to claim all liability associated with software reuse. This
type of situation would foster an atmosphere of non-responsibility on the part of
developers. The risks of liability due to reuse of software are important and deserve
serious management attention.

Once software is modified by someone other than its owner, the owner's relation
to that software becomes almost zero. In developing DoD weapon systems, software
being reused will almost certainly require some modification. Consequently, the system
developer will bear the primary liability for the modified software. The many liabilities
of ownership, especially legal are perceived deterrents to the voluntary engagement in
software reuse.

C. RECOMMENDATIONS

1. Education

There is a great need for all involved in software reuse to be fully aware of the
legal pitfalls when reusing software. Lawyers should not and cannot be the only source
of resident knowledge to the proprietary rights of software.

The DoD 1s currently making strides in ensuring its acquisition force is
competent and has a good source of dedicated individuals. However, these individuals
need to be adequately trained for the role they have to perform in complex software
acquisition contracts. Much of the software that the contracting personnel must acquire is
"state of the art" technology. [Ref. 7:11] Communication between procurement
personnel and users must be more frequent in order to make maintenance and support less
difficult. Procurement personnel need to have more training in software technology,

software life cycles, and software support systems. Additionally the procurement

40

regulatory structure within which the negotiation process must proceed, especially as to
data rights, is quite complex. Therefore, more time must be given to procurement
personnel to learn the complex issues involved with inherent concerns such as data
rights.

2. Acquisition Professional Recommendations

The first thing acquisition specialist should do is specifically define contractual
wording for reuse incentives so that developers know from the outset that they will be
using reused software or that they will be designing software to be reused. Next,
contractual language must be written for liability avoidance. That the Government will
not be liable for the failure of reused software must be clear from the very beginning of
the acquisition process. Last, specific evaluation factors for software reuse must be
developed in order to adequately decide where the best software plan is coming from.

Once the contract has been written, contract evaluators must be made clear on
understanding the software reuse part of the evaluation. There are inherent increased
costs involved in developing software to be reused and there are inherent decreased costs
involved once reused software is being used. Next, program managers must monitor the
metrics of software reuse on their projects in order to mitigate software risks.

There are specific actions which developers can take prior to and during the
development process to ensure that their rights are protected. In the case of privately
funded software the following are recognized as viable solutions:

a. Have in place a mechanism (system, procedure, discipline) for
ensuring that it can prove that it develops its software at private expense. Before
entering into a contract, a contractor must specify in an agreement which
computer software developed with the contractor's funds it intends to supply to a
DoD agency or a prime contractor with restricted rights, not unlimited rights.
This agreement must be incorporated into the contract. The company then
represents that it is providing a correct written assertion of restricted rights data
and that the company is entitled to limit the Government's rights.

A contractor must be able to prove that it develops its software at private expense
before any Government contract. Thus, the person who signs the certificate must

41

know or have a reasonable basis to believe that he can restrict the Government’s
rights in this matter. He must convince the Government that the software was (a)
developed before any Government contract and (b) was developed without any
Government funding. [Ref. 7:8]

Companies need internal procedures to prove their assertions. They must be able
to document the stages of development of their privately funded software. To
face a challenge by the Government, the company must be able to prove that the
software was workable (to a degree that people skilled in the art would say "that
software will work") before it signed that contract.

b. When dealing with an executive agency other than the DoD
under the new regulations, state in the agreement the characteristics of the
privately developed software that will be recognizable if the Government should
choose to modify it. [Ref. 7:9]

c. Do the best it can to avoid delivering privately developed
software to the Government. If the Government requires delivery, the company
can try to negotiate constraints on what the Government can do with it. A
subcontractor, dealing with a prime contractor, will have somewhat more leverage
when it attempts to negotiate this. [Ref. 7:10]

Companies must be able to show the Government that the software they
developed was at their own expense if they want to prevent the Government from
infringing any data rights. Until it can show that, it cannot restrict the Government's
rights in any privately developed software. Current regulations make it difficult for
companies to make their cases when it comes to limiting the Government’s rights to
software.

The area of software reuse and its associated legal issues is an extremely complex
and controversial topic. Intellectual property rights mechanisms, such as copyrights,
patents, and trade secrets, often pose substantial barriers to reuse. These mechanisms
need to be studied so that ways of eliminating or reducing these barriers can be found,
and the mechanisms hamessed appropriately so as to help provide economic incentives

for reuse. [Ref. 13:39]

42

D. AREAS FOR FURTHER RESEARCH

There are many issues which continue to slow the software reuse process, some
are legal issues, some are incentivising, and yet still some are economic beneﬁt issues.
All these areas have remaining problems which need to be clarified and or solved. The
following areas offer opportunities for further study and will necessarily need to be
addressed in the course of DoD software reuse implementation.

1. Examination of current proposals to the FAR and DFARS which address
software reuse as it pertains to intellectual property, and then compare past
practices to see what areas of existing software reuse plans will be impacted.

2. Examine the potential impact of a software reuse library for use by civilian
and DoD agencies to limit the cost associated with maintaining a software reuse

depository.

3. Explore what can be done to encourage companies to create software that
is reusable, both by themselves and, eventually, by other firms.

4. Explore what encouragement would result in the utilization of software
previously developed for reuse.

5. Examine the fiscal barriers to software reuse and determine if the
additional inherent cost of developing software outweigh the inherent savings
when using reused software.

6. Explore the liability of software developers resulting from the malfunction
of software as it pertains to who is responsible when software, that is originally
developed by one organization and reused by another, malfunctions.

These areas of further study are not an all inclusive list of the remaining
impediments to software reuse, however they are a good indicator of the non technical
barriers which continue to hamper the software reuse industry. While few question the
economic benefits of reusing software, there is much to be said for developing a software

reuse program, most prominently the cost involved in developing and maintaining a

43

viable program. History shows that the ability to reuse an object eventually saves on the

cost of developing and using that object.

44

LIST OF REFERENCES

1. Software Reusability: A Study of Why Software Reuse Has Not Developed Into a
Viable Practice in the Department of Defense, Thesis, Holmgren, Brian, Captain,
USAF.

2. Software Reuse Guidelines, ASQB-GI-90-015. Atlanta, Georgia: Georgia Institute for
Technology.

3. Software Reuse Survey Report. Sterling, Virginia: Software Engineering Guild.

4. Software Technology for Adaptable, Reliable Systems (STARS) 1991, Reusable
Software Acquisition: Current FAR and Budget/Finance Requirements, GR-
7670-1226(NP). Reston, Virginia: Unisys Defense Systems.

5. Samuelson, Pamela. "Is Copyright Law Steering the Right Course?" IEEE
Software, 78-86 (September 1988).

6. DeVecchio, W. Jay. Legal Barriers to Reuse and Liability, SPC-90093-N. Video
presentation to the Software Productivity Consortium. Herndon, Virginia:
Software Productivity Consortium.

7. Abstraction-Based Reuse Repositories, REUSE_REPOSITORIES-89041N. Herndon,
Virginia: Software Productivity Consortium.

8. Probert,T. (1984). Report of the rights in Data Technical Working Group (RDTWG),
Volume 1: Executive summary (pp. 88-92). Alexandria, VA: Institute for
Defense Analysis. IDA Document D-754.

9. Bott, M.F. and P.J.L. Wallis. "Ada and Software Reuse, " Software Engineering
Journal 3,5: 177-183 (September 1988).

10. Proposal for a New "Rights in Software" Clause for Software Acquisitions by the
Department of Defense. Technical Report SEI-86-TR-2, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh PA 15213, September 1986.

11. Peterson, A. S. (1989). Coming to Terms with Terminology for Software Reuse. In
J. Baldo (Ed.), Reuse in practice workshop summary (pp. 88-92).
Alexandria,VA: Institute for Defense Analysis. IDA Document D-754.

12. Draft Army Software Reuse Study, provided by Julie Allen of SAIC. January 1990.

46

13. Samuelson, P., Toward a Reform of the Defense Department Software Acquisition
Policy, CMU/SEI-86-TR-1. Pittsburgh, Pennsylvania: Software Engineering

Institute.

14. Strategy and Mechanisms for Encouraging Reuse in the Acquisition of Strategic
Defense Initiative Software. IDA Paper P-2494, by James Baldo and Craig A. Will.

Prepared for Strategic Defense Initiative Organization. Institute for Defense
Analyses. (June 1990).

15. Emory, C. William_Business Research Methods. Homewood IL: Richard D. Irwin,
Inc., 1985.

47

INITIAL DISTRIBUTION LIST

Defense Technical Information Center n oo eee e e e e eeeeee e
Cameron Station
Alexandria, VA 22304 - 6145

LIBIrary, Code S52.... ettt ettt et ettt s bt e et e e eeareeanes
Naval Postgraduate School
Monterey CA 93943 - 5101

William Short, SM/SHcuivuiiieiiiicneicieeste ettt ettt ne e eseesens
Naval Postgraduate School
Monterey CA 93943 - 5101

MaATK StONE, SM/ST ...ttt s e st eee et et eseeatesae et ne et eene
Naval Postgraduate School
Monterey CA 93943 - 5101

David V. Lamm, SM/LL.....coooiiiieiiteieieeeereeiteetaestesee e essesaeesse s eeseeaeeeve e neesesessenseenns
Naval Postgraduate School
Monterey CA 93943 - 5101

Claxton R. JORNSOM, J. oottt ee e eaeaeaee e
3338 North Wilson Road
Oak Harbor, WA 98277

Defense Logistics Studies Information Exchange..........cccooeeviieeiieicveecciceeece

United States Army Logistics Management Center
Fort Lee, VA 23801-6043

48

